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Abstract. Using the methods of quantum trajectories we study numerically a quantum dissipative system
with periodic driving which exhibits synchronization phenomenon in the classical limit. The model allows
to analyze the effects of quantum fluctuations on synchronization and establish the regimes where the
synchronization is preserved in a quantum case (quantum synchronization). Our results show that at
small values of Planck constant � the classical devil’s staircase remains robust with respect to quantum
fluctuations while at large � values synchronization plateaus are destroyed. Quantum synchronization in
our model has close similarities with Shapiro steps in Josephson junctions and it can be also realized in
experiments with cold atoms.

PACS. 05.45.Xt Synchronization; coupled oscillators – 03.65.Yz Decoherence; open systems; quantum
statistical methods – 74.50.+r Tunneling phenomena; point contacts, weak links, Josephson effects

Since 1665, when Christiaan Huygens discovered the
synchronization of two maritime pendulum clocks [1]
(see [2,3] for historical survey and modern experiments),
it has been established that this universal nonlinear phe-
nomenon appears in an abundant variety of systems rang-
ing from clocks to fireflies, cardiac pacemakers, lasers and
Josephson junction (JJ) arrays [3]. Various mathematical
tools have been developed to analyze synchronization in
simple dissipative nonlinear models with periodic driving
and complex ensembles of nonlinear coupled oscillators.
Such pure mathematical concepts as Arnold tongues in
the circle map [4] found their experimental implementa-
tions with Shapiro steps [5] and JJs synchronization [6].
However, till recently the treatment of synchronization has
been mainly based on classical mechanics even if JJs have
purely quantum origin [3,6].

A significant progress in the theory of dissipative
quantum mechanics has been done in reference [7]. It
was further developed by various groups as reviewed in
[8]. Nowadays this research line is getting more and more
importance since technology goes on smaller and smaller
scales where an interplay of dissipative and quantum ef-
fects becomes dominant. A typical example is given by
small size JJs. Here dissipative effects are always present
even if in certain cases skillful manipulations allow to re-
alize long term coherent Rabi oscillations [9].

These reasons led to a significant number of analyti-
cal studies of quantum tunneling in presence of dissipa-
tion (see e.g. [7,8,10–12]). However, analytical methods
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have serious restrictions in a strongly nonlinear regime
typical of synchronization [3]. Due to that in this pa-
per we perform extensive numerical studies of quantum
synchronization following precisely a transition from clas-
sical to quantum behavior changing effective dimension-
less Planck constant � by three orders of magnitude. The
quantum dissipative evolution is described by the master
equation for the density matrix ρ written in the Lindblad
form [13]. To perform simulations with a large number
of states N ∝ 1/� we use the method of quantum tra-
jectories [14,15] which allows to reduce significantly the
number of equations compared to direct solution of the
master equation (N instead of N2). In this approach one
quantum trajectory can be viewed as one individual real-
ization of experimental run [16].

For our studies we choose a model which in the classical
limit is closely related to the circle map [4] which gives a
generic description of Arnold tongues and synchronization
of system dynamics with an external periodic driving [3].
In absence of dissipation the evolution is described by the
Hamiltonian of kicked particle falling in a static field f :

Ĥ = p̂2/2 − fx̂+K cos x̂
+∞∑

m=−∞
δ(t−m), (1)

with the usual operators x̂ and p̂ = �n̂ = −i�d/dx. At
f = 0 this Hamiltonian corresponds to the kicked ro-
tator [17], a paradigmatic model in the fields of nonlin-
ear dynamics and quantum chaos. At non-zero f the sys-
tem has been built up in experiments with cold atoms
placed in laser fields and falling in a gravitational field
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[18]. Nontrivial quantum effects of the static force are an-
alyzed in [19]. Here we consider the dynamics of the model
in presence of additional friction force F = −g2p. Ex-
perimentally such a force can be realized by the Doppler
cooling [20]. The static force f can be also changed con-
tinuously creating acceleration in an optical lattice as it
has been demonstrated experimentally in [21]. The model
can be also implemented with JJs as described in [22].
In this case effective kicks are created by an external ac-
current source, f and p are proportional respectively to
dc-current and voltage drop across JJ, while the friction
force F naturally appears due to finite circuit resistance.
The expression of K and � via JJ parameters is given
in [22].

The classical dynamics (1) with friction can be exactly
integrated between kicks that gives a dissipative map

p̄ = (1 − γ)p+ (1 − γ)K sin x+ fγ/g2 ,

x̄ = x+ γp/g2 + (γK/g2) sin x+ f(g2 − γ)/g4 , (2)

where bars note new values of variables after one map it-
eration and 1 − γ = exp(−g2). Up to parameter rescaling
and shifts in x, p, produced by static force, the map (2)
has the form of Zaslavsky map [23]. Due to contraction in
p the dynamics in phase variable x is close to the circle
map x̄ = x+Keff sin x+ ν [3,4] and demonstrates devil’s
staircase structure in the dependence of average momen-
tum P on f (Fig. 1, top). Steps near rational rotation
numbers P/2π correspond to synchronization with exter-
nal periodic driving inside Arnold tongues. In average the
momentum P = f/g2, as it should be in an equilibrium
between the external and friction forces. Inside the hor-
izontal steps in Figure 1 the change of external driving
frequency (ν ∝ f/g2) does not change the frequency of
the system given by P/2π. Thus the phase of the system
is locked to the phase of external frequency that is called
synchronization. The synchronization takes place inside a
certain frequency interval near resonant rational values of
external frequency where the phase locking is stable. A
size of stability region near each resonance grows with the
perturbation strengthK, such a stability diagram is called
Arnold’s tongues (see more detailed definitions in Ref. [3]).
In analogy with this classical picture we will say that the
quantum synchronization takes place when in the quan-
tum system the average frequency P/2π shows horizontal
steps inside which the system frequency is independent of
the external driving frequency. The size of these steps de-
termines the size of quantum Arnold tongues for a given
perturbation strength K and �.

The corresponding quantum dissipative dynamics
is described by the master equation in the Lindblad
form [13]:

˙̂ρ = −i[Ĥ, ρ̂] − 1
2

∑

µ

{L̂†
µL̂µ, ρ̂} +

∑

µ

L̂µρ̂L̂
†
µ, (3)

where ρ̂ is the density operator, { , } denotes the anticom-
mutator, L̂µ are the Lindblad operators, which model the
effects of the environment. Following [24] we assume the

Fig. 1. Dependence of the average momentum P on static force
f at K = 0.8 for γ = 0.25 (left column) and γ = 0.05 (right
column); P is computed over t = 500 map iterations. From top
to bottom: classical case at � = 0, � = 0.012, � = 0.05, � =
0.5. Initial conditions correspond to one classical trajectory at
x = 0, p/2π = 0.38 for classical dynamics. For the quantum
evolution one quantum trajectory is taken at the same x, p
position with the wave function in the form of minimal coherent
state at given �.

Lindblad operators in the form (µ = 1, 2):

L̂1 = g
∑

n

√
n+ 1 |n〉 〈n+ 1|,

L̂2 = g
∑

n

√
n+ 1 | − n〉 〈−n− 1|. (4)

These operators act on the bases of 2π-periodic eigen-
states of operator n̂ and in the regime of weak coupling
and Markov approximations describe the dissipation force
F = −g2p induced by a bosonic bath at zero temperature.
As in [24] the numerical simulations of quantum jumps
are done for one quantum trajectory using the so-called
Monte Carlo wave function approach [16]. The additional
term with the constant force f is exactly integrated be-
tween jumps leading to a drift of wave function ampli-
tudes in the space of momentum eigenstates n. The total
number of states N is fixed by a condition of keeping all
states with probabilities higher than 10−7. As in [24], from
a wave function ψ(x) of a given quantum trajectory we
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Fig. 2. Dependence of rescaled dispersion σx/�
1/2 of wave

packet in x on force f for the cases of Figure 1 at γ = 0.25 (left
panel) and γ = 0.05 (right panel). Symbols show data at � =
0.012 (•), � = 0.05 (◦), � = 0.5 (+). Dispersion σx is averaged
over t = 500 map iterations for one quantum trajectory with
initial state of Figure 1.

determine the quantum averaged momentum and posi-
tion of the wave packet as well as their dispersion values
σp, σx. The momentum P averaged in time is related to
the particle displacement by the relation P = x/t.

The numerical results for the quantum devil’s stair-
case are shown in Figure 1 for various � values [25]. The
dependence is similar to those of I − V characteristics
shown in [5] with P ∝ V , f ∝ I. At small � values
(� = 0.012) the steps remains stable with respect to quan-
tum fluctuations. As a result, the rotation frequency is un-
changed when f is varied in some finite interval. This can
be viewed as the manifestation of quantum synchroniza-
tion which takes place inside quantum Arnold tongues.
For larger � = 0.05 small steps start to disappear and at
relatively large � = 0.5 the dependence f − P becomes
smooth so that a quantum particle slides smoothly un-
der static force f . It is interesting to compare the cases
of strong γ = 0.25 and weak γ = 0.05 dissipation (Fig. 1
left and right columns). At strong γ the contraction in p
is rather rapid and the behavior is similar to the case of
the circle map [4] and P grows monotonously with f . At
weak γ there are many different attractors in the phase
space and a classical trajectory may jump between them
rather irregularly with variation of f or initial conditions.
At small � a quantum trajectory reproduces this behav-
ior of steps overlap rather accurately. We note that very
similar structure of steps overlap is clearly seen in exper-
imental data shown in Figure 2 of [5].

To understand the properties of dissipative quantum
dynamics we analyze the structure of wave functions asso-
ciated with quantum trajectories of Figure 1. It is known
that dissipation in quantum systems leads to a collapse of
wave packet [26–28]. In agreement with these results and
recent studies of Zaslavsky map [24] we find that the wave
function in our model collapses on a compact packet of
width σx, σp (dispersion) in coordinate and momentum re-
spectively (e.g. |ψ(x)| ∼ exp(−x2/(4σ2

x))) [29]. The width
σx depends nontrivially on f as it is shown in Figure 2.
Inside the steps with synchronization the value of σx is
strongly reduced while in the sliding regime between steps
its value is significantly enhanced. In the limit of small �

where quantum synchronization takes place the rescaled
width σx/

√
� shows approximately the same functional

Fig. 3. Dependence of dispersion σ in x (σx) and p (σp) on
� for K = 0.8 at γ = 0.25 (left) and γ = 0.05 (right); σ is
averaged over t = 5000 map iterations. Left panel: f = 1.1 (•
for σx and × for σp), f = 1.9 (◦ for σx and + for σp). Right
panel: f = 0.21 (• for σx and × for σp), f = 0.37 (◦ for σx and
+ for σp). Dashed line shows the dependence σ = (�/2)1/2.
Initial state is as in Figure 1.

dependence on f for all �. This functional dependence on
f is completely changed at large � where synchronization
is absent and where σx is not very sensitive to f . For small
γ (Fig. 2 right) the dependence on f becomes more irreg-
ular in agreement with more complicated step structure
seen in Figure 1 (right). We note that at the same time
σp remains practically insensitive to variation of f . This
is related to the fact that in momentum p the dynamics
is close to a simple contraction while in coordinate x the
nonlinear dynamics significantly depends on the system
parameters (see discussion below).

To check more accurately the scaling σx, σp ∝ √
� we

fix two values of force f and vary � by three orders of
magnitude (see Fig. 3). One value of f is taken on a syn-
chronization plateau when a classical attractor is a fixed
point in the phase space and another is taken on a slope
when the classical dynamics has attractor in a form of
invariant curve as it is shown in Figure 4 for γ = 0.25.
Clearly σx is significantly larger in the case of invariant
curve than in the case of fixed point. Intuitively it is rather
natural since in the first case variation of phase x is un-
bounded in 2π while in the later case the phase value is
fixed (Fig. 4). Thus we may conclude that quantum syn-
chronization gives a significant reduction of quantum fluc-
tuations. At the same time fluctuations in p characterized
by σp are not sensitive to the choice of f . In the limit of
small � the numerical data of Figure 3 clearly show that
the wave packet dispersion scales as

σx ∼ σp ∝
√

� . (5)

In the synchronization regime the dispersion is even close
to its minimum value with σxσp = σ2

p = �/2 (dashed
line in Fig. 3). At smaller dissipation γ the asymptotic
dependence σ ∝ √

� starts at smaller values of � (cf. left
and right panels of Fig. 3). Indeed, the wave packet width
grows dispersively during time 1/γ that makes σ larger at
small γ. The dependence (5) is in agreement with the data
obtained in the regime of wave packet collapse in [24] for
a smaller range of � variation (note also [29]).

Other properties of quantum dissipative dynamics can
be understood from Poincaré phase space plots. In the
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Fig. 4. Poincaré section for K = 0.8, γ = 0.25 at f = 1.1 (left)
and f = 1.9 (right). Top: classical case; bottom: quantum case
at � = 0.05, points mark the average x, p positions of wave
packet; light blue (gray) curves on x, p axes show at t = 5000
the quantum probability distribution in x and p respectively
(arbitrary units). Number of map iterations t = 5000, initial
state is as in Figure 1. A colour version of the figure is available
in electronic form at http://www.eurphysj.org.

classical case two typical examples are shown in Figure 4
(top) with invariant curve and fixed point attractors. In
the corresponding quantum case we plot in the phase space
the values of x, p averaged over a wave function of a given
quantum trajectory at each map iteration (integer time t)
(Fig. 4 bottom, quantum probability distributions are also
shown). The quantum Poincaré plot reproduces correctly
the global structure of classical phase space but additional
noise produced by quantum fluctuations is clearly visible.
This quantum noise creates an effective width of an in-
variant curve and replaces a fixed point by a spot of finite
size. The size of these fluctuations is approximately given
by σx and σp. They decrease with � according to the re-
lation (5). Due to this quantum noise two quantum tra-
jectories with the same initial state can drop on different
attractors and thus contribute to different plateaus in the
devil’s staircase (Fig. 1). We indeed observed such cases
simulating different quantum trajectories with the same
initial state. However, convergence to different plateaus
takes place only at relatively weak dissipation (γ = 0.05)
when there are many different classical attractors close
in a phase space and quantum noise may give transitions
between them. At strong dissipation (γ = 0.25) the attrac-
tors are well separated and different quantum trajectories
converge to the same plateau.

The above results show that the quantum synchroniza-
tion has close links with the classical synchronization in
presence of noise. The later has been intensively investi-
gated and it is known that the synchronization plateaus

Fig. 5. Dependence of the average momentum P on static
force f at K = 0.8, γ = 0.25 (compare with the data in Fig. 1,
left column). Right: quantum case at � = 0.05 (same data as
in Fig. 1, left column). Left: classical simulation of classical
dynamics with 200 classical trajectories in presence of noise in
x, p with the dispersion of noise corresponding to the values
σx and σp taken from the quantum trajectory simulation at
� = 0.05 (right).

are preserved if the noise amplitude is significantly smaller
than their size [3]. In a similar way we may conclude that
the quantum synchronization remains robust with respect
to quantum fluctuations until their amplitude (propor-
tional to σx, σp ∝ √

�) remains smaller than the size of
a synchronization plateau. We also checked that the clas-
sical dynamics (2) with additional noise in x, p, with dis-
persion values σx, σp taken from the quantum evolution,
gives the dependence P vs. f which is close to the quantum
result. This is illustrated in Figure 5. This correspondence
remains valid if the size of the wave packet is sufficiently
small (σx, σp � 1). However, at large � or small γ when
σx, σp ∼ 1 this correspondence is broken and the quantum
fluctuations cannot be reduced to effects of classical noise.

Above we discussed quantum synchronization with
external periodic driving. It would be interesting to inves-
tigate the synchronization of two quantum nonlinear pen-
dulum clocks to have a quantum version of the Huygens
experiment [1]. Recently, first numerical simulations in
such kind of regime (two quantum coupled Duffing oscil-
lators) has been performed in [30]. Their results show that
in the case when the quasi-integrable dynamics of oscilla-
tors becomes synchronized (entrained) the von Neumann
entropy of one oscillator drops significantly. This result is
in a qualitative agreement with our data showing that the
dispersion of quantum state drops significantly on syn-
chronization plateaus (Fig. 2) [31]. Further investigations
of quantum synchronization in coupled nonlinear systems
are of great interest. For example, quantization may pro-
duce nontrivial effects in the synchronization transition in
a disordered JJ series array discussed in [32].

Modern technological progress allows to study the
regime of quantum synchronization with small size JJs
(e.g. similar to those of [9]) or with cold or BEC atoms
(e.g. like in [18]). This should open new perspectives for
synchronization of quantum objects with possible appli-
cations to quantum computations.
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